a2 United States Patent

Persson et al.

US009471493B2

US 9,471,493 B2
Oct. 18, 2016

(10) Patent No.:
45) Date of Patent:

(54) INVALIDATION OF INDEX ITEMS FOR A
TEMPORARY DATA STORE

(71) Applicant: ARM LIMITED, Cambridge (GB)

(72) Inventors: Erik Persson, Lund (SE); Ola
Hugosson, Lund (SE)

(73) Assignee: ARM Limited, Cambridge (GB)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 14 days.
(21) Appl. No.: 14/557,649

(22) Filed: Dec. 2, 2014

(65) Prior Publication Data
US 2015/0169452 Al Jun. 18, 2015

(30) Foreign Application Priority Data

Dec. 16, 2013 (GB) .occovviiiiciiiciciee 1322208.8

(51) Int. CL
GOGF 12/00
GOGF 13/00
GOGF 13/28
GOGF 12/08

(52) US.CL
CPC ... GOGF 12/0808 (2013.01); GOGF 12/0895
(2013.01)

(2006.01)
(2006.01)
(2006.01)
(2016.01)

(58) Field of Classification Search
CPC .ot GOG6F 12/0808
See application file for complete search history.

MISS

REQUEST RECEIVED

TAG
LOOKUR

(56) References Cited
U.S. PATENT DOCUMENTS

4,322,795 A * 3/1982 Lange ..o GO6F 12/125
711/136
5,058,006 A * 10/1991 Durdan GO6F 12/0808
T11/122
5,067,078 A * 11/1991 Talgam GO6F 12/0802
365/230.01

(Continued)

OTHER PUBLICATIONS

Definition of cache; TechTarget; Sep. 5, 2011; retrieved from
https://web.archive.org/web/20110905142 103/http://searchstorage.
techtarget.com/definition/cache on Jan. 27, 2016 (1 page).*

(Continued)

Primary Examiner — Yong Choe
Assistant Examiner — Daniel C Chappell
(74) Attorney, Agent, or Firm — Nixon & Vanderhye P.C.

(57) ABSTRACT

A data processing apparatus and corresponding method of
data processing are provided. The data processing apparatus
comprises a temporary data store configured to store data
items retrieved from a memory, wherein the temporary data
store selects one of its plural data storage locations in which
to store a newly retrieved data item according to a prede-
termined circular sequence. An index data store is config-
ured to store index items corresponding to the data items
stored in the temporary data store, wherein presence of a
valid index item in the index data store is indicative of a
corresponding data item in the temporary data store. Invali-
dation control circuitry performs a rolling invalidation pro-
cess with respect to the index items stored in the index data
store, comprising sequentially processing the index items
stored in the index data store and selectively marking the
index items as invalid according to a predetermined crite-
rion.

18 Claims, 5 Drawing Sheets

50

HIT

UPDATETAG |52
WMEMORY

ROLLING INVALIDATION 53

54

58

ENTRY
SMAX_AGE
&& ENTRY IS
VALID 2

59~ DETERMINE DATA
LOCATION IN
CIRCULAR BUFFER

CIRCULAR
BUFFER POSITION™ N
CURRENTLY IN
USE?

FETCH NEW
BLOCK

USE DATA

57

Y
55

WAIT

Y
56

US 9,471,493 B2

Page 2
(56) References Cited 2004/0143711 A1* 7/2004 SO .cocoovvvvvviieens GOG6F 12/0808
711/144
U.S. PATENT DOCUMENTS 2005/0015555 Al* 1/2005 Wilkerson GO6F 12/122
711/128
5287481 A * 2/1994 Tin oo, GO6F 12/0891 2005/0086437 Al* 4/2005 Modha GO6F 12/124
711/135 711/133
5398325 A * 3/1995 Chang GOG6F 12/0831 2010/0030971 Al* 2/2010 Usui .ocoovevrverennns GOGF 12/0864
710/112 711/129
5,812,815 A * 9/1998 Yazdy ..ocoooen.... GO6F 12/0831 2011/0080959 A1* 4/2011 Bjorklund HO4N 19/61
711/118 375/240.25
6,122,709 A * 9/2000 Wicki .oovvevvnn.. GO6F 12/0895 2012/0317361 Al* 12/2012 Solihin GO6F 12/0864
711/118 7117128
6349364 BL* 2/2002 Kai oo GOG6F 12/0886 2013/0170541 Al* 7/2013 Pace .cocoovvvrrnenn. HO4N 19/149
” 711/129 375/240.02
6,378,047 B1* 4/2002 Meyer GOG6F 12/0804
71135 OTHER PUBLICATIONS
6,470,437 B1* 10/2002 Lyon GOG6F 12/1054
711/144 e . . .
Cache Organizations for H.264/AVC Motion Compensation; Kim et
3k
6,533,460 Bl 42003 Chopra ... GOGK 2/138(1)42‘2 al; 13th IEEE International Conference on Embedded and Real-
6,662,280 B1* 12/2003 Hughes GO6F 8/4442 Time Computing Systems and Applications; Aug. 21-24, 2007; pp.
711/118 534-541 (8 pages).*
7,243,204 B2* 7/2007 Citronco.o.... GOG6F 12/0802 Definition of rolling; The Free Dictionary; FARLEX; retrieved from
711/130 http://www.thefreedictionary.com/rolling on Jan. 27, 2016 (1
7,836,258 B2* 11/2010 Brown GOG6F 12/0808 page).*
345/557 . . .
Cache coherence for GPU architectures; Singh et al; 2013 IEEE
3k t])
8,364,899 B2 /2013 Ambroladze G06F7ﬁ;i§§ 19th International Symposium on High Performance Computer
9,087,392 B2* 7/2015 Doylecocovrrnnen. GO6T 15/005 Architecture (HPCA2013); Feb. 23-27, 2013; pp. 578-590 (13
9,218,288 B2* 12/2015 Aléxander GOGF 12/0808 ~ Pages).”
9,304,923 B2* 4/2016 GO6F 12/0817 Search Report for GB 1322208.8 dated May 22, 2014, three pages.
2002/0174302 A1* 11/2002 Frank ..o, GO6F 12/023 Kim et al., “Cache Organizations for H.264/AVC Motion Compen-
711/130 sation”, I[EEE Computer Society, 2007, 8 pages.
2002/0188810 Al* 12/2002 Nakamura GOG6F 12/0802 Igehy et al., “Prefetching in a Texture Cache Architecture”, Stanford
711/144 University, No Date, 11 pages.
2003/0084251 Al* 5/2003 Qaither GOG6F 12/0804
711/133 * cited by examiner

U.S. Patent Oct. 18, 2016 Sheet 1 of 5 US 9,471,493 B2

~10
o«
REFERENCE FRAME
AREA REQUESTS OATA
8
11
—
1A
TAG RAM :

L 12A

CIRCULAR :

BUFFER ;
___________________________ Borcaon= _E

14
¥ /
Lo 13
AFBC FRAME
BUFFER(S) MEMORY

FIG. 1

U.S. Patent Oct. 18, 2016 Sheet 2 of 5 US 9,471,493 B2

REQUEST <0
TRIGGER DATA FETCH TAG RAM CONTROL
24 27 30
“ - ROLLING
] ; KU 3
23 =] HIT / MISS? MAX_AGE AALDATON] =
HASH GENERATION] CONTROL
SEQ NS 1 1 AGE
GENERATION 8 CHECK INDEYX
Ak -25 F 0 |INCREMENTER
. 31
¥ ¥ N G o) JE—
BLOCK OF VALID | SEQNO. | CODRDINATES (XY REF FRAME &) A
DATAFOR
PROCESSING -
k INDEX [-
.\ o
922
32 N 28 TAG RAM CONTROL
\J"*-w
HIGHEST ACCESSED CIRCULAR e 20
- --to-l STORAGE LOCATION | - BUFFER INDEX Paﬁ'ﬁ%ﬁéﬁfiﬁr) 29 |
COUNTER (D) CALCULATION St HUN WUURTER [
CIRCULAR BUFFER 12
INDEX
S o

BLOCK OF DATA
FROM MEMORY

FIG. 2

U.S. Patent Oct. 18, 2016 Sheet 3 of 5 US 9,471,493 B2

TAG RAM ENTRIES

256 HEADER TAGS

TOTAL DEPTH 2048 BODY TAGS
OF TAG RAM <

=824 ENTRIES | | 54 WORDS FOR HEADER POSN FIFO

256 WORDS FOR BODY POSNFIFO

EXAMPLE BODY TAG ENTRY

VALID 1] 1 TAGFIELD[17] | SEQUENCE [13

SEQUENCE SIZE (13 BITS) = 2 + LOG, (2048)

MAX_AGE (BODY) = 2048-192
{192 ENTRIES FOR PREFETCH;)

FiG. 3

U.S. Patent Oct. 18, 2016 Sheet 4 of 5 US 9,471,493 B2

41

=

}:

....i
.

ATNEW
ENTRY TO
<_ BESTOREDIN

. CACHE _~

47
-

%

DO STEP 1 NEXT

&

¥

TR NG
READTAG | 45 v " ENTRY READ ™_
ENTRYFROM V7 < AT STEP 1 WAS VALID >
NEXT INDEX 88 SMAX_AGE

T ENTRY ™
" OVERWRITTEN ™
< BETWEEN STEP1 .
. &STEP2 .~

i

DO STEP 2NEXT

\.‘
44

46} INVALIDATE
ENTRY

FIG. 4

U.S. Patent Oct. 18, 2016

REQUEST RECEIVED

MISS

UPDATETAG |52

MEMORY

53

L.

ROLLING INVALIDATION

Sheet 5 of 5

AENTRY™SC
A SMAX_AGE ™
. B3&ENTRY IS .~

“SVALID 7

US 9,471,493 B2

¥

594

DETERMINE DATA
LOCATION IN
CIRCULAR BUFFER

¥

. B4
~"CIRCULAR™
&~ BUFFER POSITION ™S, FETCH NEW
“\CURRENTLY IN_~ BLOCK

USE DATA

S USE ? e T
. 56

55

k.

WAIT

FIG. b

US 9,471,493 B2

1
INVALIDATION OF INDEX ITEMS FOR A
TEMPORARY DATA STORE

This application claims priority to GB Patent Application
No. 1322208.8 filed Dec. 16, 2013, the entire content of
which is hereby incorporated by reference.

The present invention relates to data processing. More
particularly the present invention relates to the invalidation
of index items for a temporary data store.

BACKGROUND

It is known to provide a data processing apparatus with a
temporary data store which is configured to store data items
retrieved from a memory. This caching of the data items
prevents the data items from being repeatedly retrieved from
the memory (with the associated latency of that retrieval)
each time they are needed to be accessed.

The temporary data store (cache) may be configured as a
circular buffer in which newly retrieved data items are stored
in storage locations selected in a predetermined circular
sequence.

In addition it is known to provide an index (tag memory)
which stores index items corresponding to the data items
stored in the temporary data store. However, as data is
written over and over again into a circular buffer the risk
arises the tag memory references (index items) point to data
items that are no longer present in the circular buffer.

Further it is desirable if the index (tag memory) only
consumes a limited amount storage space (i.e. corresponds
to a limited area when the data processing apparatus is
implemented on silicon) and thus the storage of a unique
identifier in the index for each data item stored in temporary
data store, given typical sizes the temporary data store and
the number of temporary data items to be stored, is unde-
sirable.

Accordingly, it would be desirable to provide a technique
which addresses the problem of an index item pointing to a
data item that is no longer present in the temporary data
store, without the above-mentioned disadvantage of a large
associated storage of unique identifiers being required.

SUMMARY

Viewed from a first aspect, the present invention provides
a data processing apparatus comprising:

a temporary data store configured to store data items
retrieved from a memory, wherein the temporary data store
has plural data storage locations configured to store the data
items and the temporary data store is configured to select a
storage location of the plural data storage locations in which
to store a newly retrieved data item according to a prede-
termined circular sequence of the plural data storage loca-
tions;

an index data store configured to store index items cor-
responding to the data items stored in the temporary data
store, wherein presence of a valid index item in the index
data store is indicative of a corresponding data item in the
temporary data store; and

invalidation control circuitry configured to perform a
rolling invalidation process with respect to the index items
stored in the index data store, wherein the rolling invalida-
tion process comprises sequentially processing the index
items stored in the index data store and selectively marking
the index items as invalid according to a predetermined
criterion.

10

15

20

25

30

35

40

45

50

55

60

65

2

Viewed from a second aspect the present invention pro-
vides a data processing apparatus comprising:

means for storing data items retrieved from a memory,
wherein the means for storing data items has plural data
storage locations configured to store the data items;

means for selecting a storage location of the plural data
storage locations in which to store a newly retrieved data
item according to a predetermined circular sequence of the
plural data storage locations;

means for storing index items corresponding to the data
items stored in the means for storing data items, wherein
presence of a valid index item in the means for storing index
items is indicative of a corresponding data item in the means
for storing data items; and

means for performing a rolling invalidation process with
respect to the index items stored in the means for storing
index items, wherein the rolling invalidation process com-
prises sequentially processing the index items stored in the
means for storing index items and selectively marking the
index items as invalid according to a predetermined crite-
rion.

Viewed from a third aspect the present invention provides
a method of data processing comprising the steps of:

storing data items retrieved from a memory in plural data
storage locations configured to store the data items;

selecting a storage location of the plural data storage
locations in which to store a newly retrieved data item
according to a predetermined circular sequence of the plural
data storage locations;

storing index items corresponding to the data items stored
in the plural data storage locations, wherein presence of a
valid stored index item is indicative of a corresponding data
item in the plural data storage locations; and

performing a rolling invalidation process with respect to
the stored index items, wherein the rolling invalidation
process comprises sequentially processing the stored index
items and selectively marking the index items as invalid
according to a predetermined criterion.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be described further, by way of
example only, with reference to embodiments thereof as
illustrated in the accompanying drawings, in which:

FIG. 1 schematically illustrates a data processing appa-
ratus in one embodiment;

FIG. 2 schematically illustrates in more detail the tag
RAM and circular buffer of FIG. 1 in one embodiment;

FIG. 3 schematically illustrates a number of entries of
different types in the tag RAM in one embodiment, together
with more detail of a corresponding example entry and some
corresponding sizing parameters in one embodiment;

FIG. 4 schematically illustrates a sequence of steps which
are taken by a rolling invalidation process in one embodi-
ment; and

FIG. 5 schematically illustrates a sequence of steps which
are taken by a data processing apparatus in one embodiment.

DESCRIPTION OF EXAMPLE EMBODIMENTS

A data processing apparatus comprises: a temporary data
store configured to store data items retrieved from a
memory, wherein the temporary data store has plural data
storage locations configured to store the data items and the
temporary data store is configured to select a storage loca-
tion of the plural data storage locations in which to store a
newly retrieved data item according to a predetermined

US 9,471,493 B2

3

circular sequence of the plural data storage locations; an
index data store configured to store index items correspond-
ing to the data items stored in the temporary data store,
wherein presence of a valid index item in the index data
store is indicative of a corresponding data item in the
temporary data store; and invalidation control circuitry
configured to perform a rolling invalidation process with
respect to the index items stored in the index data store,
wherein the rolling invalidation process comprises sequen-
tially processing the index items stored in the index data
store and selectively marking the index items as invalid
according to a predetermined criterion.

The temporary data store stores each newly retrieved data
item according to a predetermined circular sequence of its
plural data storage locations (i.e. is configured as a circular
buffer), whilst a corresponding new index item is stored in
the index data store indicative of the presence of the newly
retrieved (and now newly stored) data item. However the
connection between index items stored in the index data
store and data items stored in the temporary data store is
one-way, i.e. it is not possible (or at least prohibitively
laborious) to find a corresponding index item stored in the
index data store for a given data item stored in the temporary
data store. Furthermore, updating the index data store in
dependence on updates made to the temporary data store
would require undesirable additional control circuitry, so for
example and approach of invalidating an index item in the
index data store when its corresponding data item in the
temporary data store is overwritten would not be a desirable
arrangement.

Instead the present invention recognises that a useful
approach to keeping track of whether the index items in the
tag memory point to data that is still present in the temporary
data store can be provided by sequentially processing data
items according to a rolling invalidation process which
examines each index item in turn and marks particular index
items as invalid when a predetermined criterion is fulfilled.
This approach thus enables the index items to be invalidated
without reference to the temporary data store, but for
example by suitable configuration of the pace with which the
rolling invalidation process takes place and the order in
which the index items are examined it has been found that
the set of valid index items can be both trustworthy and large
enough for the caching purposes of the temporary data store.

Furthermore, given the desirability of limiting the storage
space that needs to be provided for the temporary data store,
it is recognised that in some implementations where the data
items being temporarily stored in the temporary data store
will form part of a large data set, it may well be the case that
the limited set of identifiers which is stored in each index
item entry may repeatedly wrap around as the data process-
ing apparatus works its way through that large data set. It
would be undesirable to increase the size of the identifier
that is stored in each index item entry, and the present
techniques enable problems which could otherwise arise
when such wrap around occurs (not knowing whether an
index item corresponds to a new or an old data item) to be
mitigated against by means of the rolling invalidation pro-
cess.

The predetermined criterion may take a variety of forms,
but in one embodiment the invalidation control circuitry is
configured, when performing the rolling invalidation pro-
cess, such that the predetermined criterion is fulfilled if a
duration for which a selected index item has been stored in
the index data store exceeds a predetermined period. Setting
the criterion to be a duration for which the selected index
item has been stored in the index data store, in other words

10

15

20

25

30

40

45

50

55

60

65

4

the “age” of the selected index item, ensures that the rolling
invalidation process invalidates the oldest index items, for
which the corresponding data items have thus been stored
for the longest in the temporary data store and thus have had
the greatest chance to have already been used, and so
represent the best candidates to be overwritten.

This predetermined period may take a variety of values
that may be selected in accordance with the specific system
requirements, in particular in dependence on the relative size
of the index data store and the temporary data store and/or
in dependence on the particular usage which it is desired to
make of the temporary data store (e.g. how aggressively
index items in the index data store are invalidated, effec-
tively freeing up in the temporary data store).

Further, the manner in which the duration for which the
selected index item has been stored in the index data store
may be configured in a variety of ways, but in some
embodiments the invalidation control circuitry is configured
to determine the duration for which the selected index item
has been stored in the index data store with reference to a
count of a number of index items which have been stored in
the index data store since the selected index item was stored
in the index data store. As such a counter may be provided
which is for example incremented each time an index item
is stored in index data store and thus by comparison between
the current value indicated by this counter and a value which
this counter had when the selected data item was stored in
the index data store the duration for which the selected index
item has been stored in the index data store can be deter-
mined. The value which this counter had when the selected
data item was stored in the index data store may be main-
tained in a variety of different ways, but may for example be
directly stored as part of the selected index item entry in the
index data store.

In some embodiments the rolling invalidation process
comprises two steps, wherein at a first step of the two steps
the selected index item is read from the index data store and
at a second step of the two steps the selected index item is
marked as invalid if a duration for which the selected index
item has been stored in the index data store exceeds a
predetermined period. Dividing the rolling invalidation pro-
cess into two steps in this manner may be advantageous
because of the access to the index data store which the
rolling invalidation process requires. The division of the
rolling invalidation process into two steps thus means that
reading the index data store only take place at the first step,
and no read access is performed at the second step. The
power consumption associated with the index data store
depends on both the frequency with which it is accessed as
well as the “width” of the index store (i.e. the amount of data
stored in each of its entries) and thus limiting the frequency
with which the index data store is accessed by the rolling
invalidation process advantageously moderates the addi-
tional power consumption due to implementing the rolling
invalidation process.

There are various ways in which the two steps of the
rolling invalidation process could be separated and trig-
gered, but in some embodiments a single step of the two
steps is performed each time a new index item is stored in
the index data store. On the one hand, aligning the rolling
invalidation process with the storage of new index item in
the index data store (i.e. when a new data item has been
stored in the temporary data store) is an expedient manner of
configuring the rolling invalidation process, since the addi-
tion of the new data item to the temporary data store will
have overwritten an older data item and thus there may now
be an index item in the index data store whose target is no

US 9,471,493 B2

5

longer exists. However, it should be noted that by virtue of
the fact that only a single step of the two steps is performed
each time a new index data item is stored in the index data
store, the sequential processing of the index data items by
the rolling invalidation process will take twice the depth of
the temporary data store to complete one full sweep over the
set of index data items stored in the index data store. This
then means that the index data items stored in index data
store can be kept valid for commensurately longer than if,
say, the rolling invalidation process were directly aligned
with the depth temporary data store, thus allowing data items
in the temporary data store longer with a corresponding
valid index item in the index data store such that they may
be accessed and (re)used.

There are various ways in which the rolling invalidation
process could select index items in the index data store to
examine (and potentially invalidate), but in some embodi-
ments the invalidation control circuitry is configured to
sequentially perform the rolling invalidation process with
respect to a further predetermined circular sequence of
storage locations of the index items stored in the index data
store. This further predetermined circular sequence of stor-
age locations may for example correspond to a sweep from
low to high indices of the storage locations.

In some embodiments the index data store is configured to
store a sequence number in association with each of the
index items, wherein the sequence number is incremented
for each new index item stored in the index data store. The
index data store fundamentally needs to store sufficient
identification information as part of each index item to allow
a determination to be made of whether there is a “hit” or
“miss”, i.e. whether the content of the index data store
indicates that the corresponding data item which is the
subject of the current access request is currently stored in the
temporary data store. It is advantageous if the size of this
identification information can be reduced such that overall
size of index data store (in particular its width) can be
correspondingly reduced, reducing the silicon area con-
sumed by this component of the data processing apparatus
and its corresponding power consumption. The provision of
a sequence number which is incremented for each new index
item stored in the index data store provides a simple and
unique identifier which in particular, if sized appropriately,
allows a distinction to be made between an index item
written on a first iteration of new entries being made in the
temporary data store and an index data item written from a
second iteration of new entries being made in the temporary
data store.

For example, if the set of sequence numbers only matched
the number of possible entries in the temporary data store
(say for example, 128 blocks), then a first set of 128 data
item fetches to the temporary data store would have been
given the sequence numbers 0-127 in the index data store.
However, the next 128 data item fetches would also have
been given the sequence numbers 0-127. Thereafter when
checking the index data store (e.g. by “tag lookup™) there
would be no telling if a given index data item corresponds
to the second lap in the temporary data store or from the old
lap and are already overwritten. The wrap-around distance
of the sequence numbers can thus be sized to avoid this.

However in addition previously the index data store might
have had to store an undesirable long sequence number to
avoid problems with the sequence numbers wrapping around
during the course of a sequence of data items being retrieved
from the memory and stored in the temporary data store. For
example, in the context of a video processor which uses the
temporary data store to cache portions of a reference frame

10

15

20

25

30

35

40

45

50

55

60

65

6

of image data, a very large sequence number field would be
needed to avoid wrapping around several times during the
course of a frame. However, the rolling invalidation process
provided by the present invention mitigates against this
problem by sequentially processing the index items stored in
the index data store and selectively marking them as invalid
according to a predetermined criterion, which may for
example be duration for which a selected index item has
been stored in the index data store (its “age”). This advan-
tageously enables the benefit of the “unique identifier”
function of the sequence number to be gained, but where the
sequence number field can be significant smaller than it
would have had to have been prior to the present invention.

Furthermore, the provision of the sequence number may
be used to determine the age of index items in the index data
store, and in some embodiments the data processing appa-
ratus is configured to determine the duration for which a
selected index item has been stored in the index data store
with reference to the sequence number stored in association
with the selected data item. For example this may be carried
out using a difference between a current sequence number
(to be allocated to the next index item to be stored in the
index data store) and the sequence number stored in asso-
ciation with the selected data item.

Moreover the sequence number can advantageously be
used to determine the storage location of the selected data
item in the temporary data store by virtue of the fact that the
sequential nature of the sequence numbers can be aligned
with the predetermined circular sequence of the plural data
storage locations. Hence in some embodiments the data
processing apparatus is configured, when access to a
selected data item in the memory is required, to determine
with reference to the index items in the index data store if the
selected data item is stored in the temporary data store, and,
if it is determined that the selected data item is stored in the
temporary data store, to determine a storage location of the
selected data item in the temporary data store with reference
to the sequence number.

In some embodiments the data processing apparatus is
configured to determine the storage location of the selected
data item in the temporary data store using a calculation
dependent on the sequence number and a modulo of a
number of the plural data storage locations in the temporary
data store. As mentioned above, the range of the sequence
numbers may exceed the number of data items which can be
stored in the temporary data store and the introduction of the
modulo function can superimpose a “wrap around” on
calculation using the sequence numbers to address this.

In some embodiments the data processing apparatus fur-
ther comprises a counter configured to wrap around at the
number of the plural data storage locations in the temporary
data store, wherein the counter is incremented for each new
index item stored in the index data store, and wherein the
storage location of the selected data item in the temporary
data store is calculated as a current value of the counter
minus a duration for which the selected index item has been
stored in the index data store modulo the number of the
plural data storage locations in the temporary data store. The
counter can thus be configured to correspond directly to the
predetermined circular sequence of the plural data storage
locations and in principle to give the storage location of the
selected data item in the temporary data store. Nevertheless
the present techniques recognise that it would be disadvan-
tageous (for storage space reasons) to additionally store the
value of the counter in association each new index item
stored in the index data store, and these embodiments
advantageously allow the storage location to be determined

US 9,471,493 B2

7

with reference to a current value of the counter minus the
“age” of the selected data item (modulo the size of the
temporary data store). Using a current value of the counter
means that no storage of the value of the counter in asso-
ciation each new index item is required whilst the “age” of
the selected data item can be determined with reference to its
stored sequence number.

In some embodiments the data processing apparatus is
configured, when access to a selected data item in the
memory is required, to determine with reference to the index
items in the index data store if the selected data item is stored
in the temporary data store, and, if it is determined that the
selected data item is stored in the temporary data store, to
determine if a duration for which the selected index item has
been stored in the index data store exceeds a predetermined
period, and, if the duration for which the selected index item
has been stored in the index data store exceeds the prede-
termined period, to cause the selected data item to be
retrieved from the memory. Accordingly, in other words if
the age of the selected data item is found to be too great, then
the “look up” in the index data store is treated in the same
manner as if the selected index item had not been stored in
the index data store, i.e. if the “look up” had resulted in a
“miss”. This advantageously provides another mechanism
for enforcing the “age rule”, which some embodiments of
the rolling invalidation process use for the predetermined
criterion. This is advantageous because of the further oppor-
tunity that it provides for identifying index items which have
already become too old, but have not yet been picked up by
the rolling invalidation process.

In some embodiments, the data processing apparatus is
configured, when access to a selected data item in the
memory is required, to determine with reference to the index
items in the index data store if the selected data item is stored
in the temporary data store, and if a selected index item
corresponding to the selected data item is marked as invalid,
to cause the selected data item to be retrieved from the
memory. Thus in these embodiments as well the “lookup” in
the index data storage is handled in the same manner as if the
selected index it had not been stored in the index data store,
i.e. if the “look up” had resulted in a “miss”. This provides
an expedient mechanism for handling in its items which are
marked as invalid.

The number of data items which the temporary data store
can store can be flexibly configured in dependence on the
particular system requirements. In particular the number of
data items may essentially correspond to the “maximum
age” which the rolling invalidation process may have con-
figured as it predetermined criterion. When this is the case
the temporary data store is then provided as a dedicated
caching mechanism for data items which may be requested
from memory in which the size of the temporary data is
determined by the number of times that data items stored
therein are expected to be accessed (to avoid repeated
external memory fetches). However, the temporary data
store may also be provided in order to function as a prefetch
buffer to mitigate against the long latency of the external
memory. Accordingly, in some embodiments a number of
the plural data storage locations in the temporary data store
is greater than a number of index items corresponding to the
predetermined period. Hence, the portion of the temporary
data store which “exceeds” the “maximum age” is thus
provided for the purpose of this prefetching.

In some embodiments the data processing apparatus is
configured, when it is determined that the newly retrieved
data item must be retrieved from the memory to the tem-
porary data store, to delay the retrieval until a previous data

10

15

20

25

30

35

40

45

50

55

60

65

8

item stored in the storage location has been stored in the
temporary data store for longer than the predetermined
period. Accordingly whilst the “maximum age” may on the
one hand the used as an upper boundary by the rolling
invalidation process, beyond which identified index items
are marked as invalid, on the other hand the “maximum age”
may additionally be used as a “minimum age” which a data
item in the temporary data store must reach before it is
allowed to be overwritten. This advantageously provides a
data processing apparatus with a mechanism for ensuring
that data items temporarily stored in the temporary data store
will not be removed while they are expected to be still in use,
this being set up by appropriate selection of the “maximum/
minimum age”.

As mentioned above the data processing apparatus may be
a video processor and in some such embodiments the data
items are portions of a reference frame of video data. For
example, the data items may correspond to an area of pixels
from within the reference frame which are required data
processing purposes. In the context of a video processor and
a reference frame of video data these areas of pixels may for
example be subsequently used for motion compensation or
motion estimation. These reference frames may be stored in
a compressed representation (for example having the advan-
tage of yielding a higher storage capacity per silicon area).

Access to the index data store may be configured to be
accessed in a number of different ways, but in some embodi-
ments each index item is stored in the index data store at a
location given by a hash of at least one identifier associated
with the corresponding portion of the reference frame. These
identifiers may take a number of different forms, but in some
embodiments the at least one identifier comprises at least
one of: coordinate value information, a reference frame
identifier, and information regarding a storage location in the
memory. The coordinate information may for example be a
set of (x,y) coordinates, the reference frame identifier may
for example allow one reference frame to be distinguished
from the next and the information regarding a storage
location in the memory may for example be an offset into a
buffer in memory from which the data item is retrieved.

FIG. 1 schematically illustrates a data processing appa-
ratus 10 in one embodiment. This data processing apparatus
10 is in fact a video engine of which only a very limited set
of components of relevance to the present disclosure are
shown in FIG. 1 and discussed here. These components
comprise a tag RAM 11, a circular buffer 12 and a memory
13. The subsystem shown in FIG. 1 is responsible for
fetching parts of reference frames upon area requests issued
by firmware within the video engine. These area requests
correspond to small data structures containing various con-
trol bits as well as coordinates specifying an area of pixels
to be fetched from a reference frame. The pixels fetched by
this subsystem are subsequently used by the video engine for
motion compensation or motion estimation.

Pixel data are retrieved from the memory 13, and in
particular the frame buffer 14 (which in the illustrated
embodiment is an AFBC (ARM® Frame Buffer Compres-
sion) frame buffer, as provided by ARM Limited, Cam-
bridge, UK). The retrieved pixel data are cached in the
circular buffer 12 (which thus acts as a temporary data store)
such that the pixels fetched for one area request may be
reused by subsequent area requests thus saving power and
memory bandwidth. In addition, as will be described in more
detail below, the circular buffer 12 is sized such that area
requests may also be serviced which are issued some time in
advance of when the retrieved pixel data is actually required
such that the circular buffer 12 and thus also serves a

US 9,471,493 B2

9

prefetching/latency hiding function. The “circular” nature of
the circular buffer 12 is graphically illustrated in FIG. 1 by
the looping arrow shown to its left. This corresponds to the
fact that the data items (blocks of compressed pixel data),
when retrieved from the AFBC frame buffer 14, are stored
in the circular buffer 12 in one of its plural storage locations
on the basis of a predetermined circular sequence of those
locations. Note that where the AFBC frame buffer 14 may be
considered to correspond to a single reference frame, there
will typically be multiple such frames stored in the memory
13 and the multiple set of “AFBC frame buffer(s)” 14 shown
in FIG. 1 represents this.

The tag RAM 11 is provided in association with the
circular buffer 12 and enables a determination to be made
when a reference frame area request is received of whether
or not the corresponding specified data item is currently
stored in the circular buffer 12. Accordingly, when a new
data item is stored in the circular buffer 12, a corresponding
new entry (index item) is made in the tag RAM 11. The
presence of a valid tag entry in tag RAM 11 is indicative of
the presence of a corresponding data item in the circular
buffer 12. However, due to the fact that data items are
written over and over again into the entrance of the circular
buffer, a mechanism is required to keep track of whether the
tag entries in the tag RAM 11 point to data items that are still
present in the circular buffer 12. The mechanism provided
for doing this will be described in more detail below.

The dashed lines 11A and 12A in FIG. 1 schematically
illustrate the fact that the tag RAM 11 and circular buffer 12
may in fact each be divided into two (or more) parts (which
may be embodied as entirely separate components, contigu-
ous components, or merely logical subdivision within single
components), in this example a first part being provided for
AFBC headers and the second part been provided for AFBC
body data. In the illustrated embodiment the circular buffers
12 and 12A are configured to cache aligned 32-byte blocks
of compressed data. In the case of the headers, each 32-byte
block will fit two headers. For the body data, two or more
4x4 pixel blocks may fit depending on the compression and
data alignment.

FIG. 2 schematically illustrates in more detail the con-
figuration of the tag RAM 11 and the circular buffer 12 in
one embodiment. More detail in particular is given of the
configuration of the tag RAM 11 which in the illustration of
FIG. 2 is represented by all components shown other than
the circular buffer 12. These components of the tag RAM 11
are represented by the tag RAM control 20 and 21, the tag
RAM storage 22 and the hash generation unit 23.

When the reference frame area request is received by tag
RAM 11 it is first received by the hash generation unit 23.
The hash generation unit 23 is in particular configured to
generate an index into the tag RAM storage 22. This is done
on the basis of identifiers included in the reference area
request. Header tags are indexed by a hash of the reference
frame number and an (X,y) coordinate of the area requested,
whilst body tag indexing instead uses a hash of the reference
frame number offset into the AFBC frame buffer 14. Each
tag entry stores a valid bit, a sequence number and a tag
field. The use of the valid bit and sequence number will be
described in more detail below. The tag field is populated
with bits derived from “coordinates” in the area request (x,y
coordinates and reference frame number). Essentially the
information stored in the tag field enables the tag RAM to
determine whether a cache “hit” or a cache “miss” has
occurred when a request is looked up in the tag RAM. One
of ordinary skill in this technical field is very familiar with
the mechanisms provided to enable such cache look up

25

40

45

50

10

functionality and further detailed description is dispensed
with here for brevity. This functionality is merely sum-
marised by the functional “hit/miss?”” block 25 shown as part
of the tag RAM control 20.

When a request is looked up in the tag RAM 11, if a
provisional “hit” occurs (i.e. the relevant tag content
matches with respect to the content of the tag field) then the
tag RAM control 20 is configured to further examine the
corresponding valid bit and the sequence number. This
examination is shown in the figure as being carried out by
the functional “hit/miss?” block 25. The valid bit indicates
the validity of this entry in the tag RAM, i.e. whether it may
be used or not. If the valid bit indicates that this entry is
invalid, then the tag RAM 11 is configured to treat the
request as if a cache “miss™ had occurred and the requested
data is retrieved from memory 13. Tag RAM control unit 20
is additionally configured when such a provisional “hit”
occurs to examine the content of the sequence number field.
The sequence field is populated when a new entry is made
in the tag RAM by the sequence number generation unit 25
in the tag RAM control 20. The sequence number generation
unit 25 is in fact configured as a counter S which increments
through a predetermined sequence of values, a new value in
this sequence being provided as the corresponding sequence
number of a new entry in the tag RAM. When the provi-
sional “hit” occurs an age check is performed by the age
check unit 26. This age check comprises comparing the
sequence number retrieved from the matching block and
comparing this against a maximum age (MAX_AGE) 27
which is predetermined for the operation of the tag RAM
and stored within the tag RAM control 20. If a block is older
than the maximum value (shown as a signal to the “hit/
miss?” unit 24) then the block is considered to be expired.
The expired blocks are, like invalid blocks, treated like
cache misses and will cause the same data to be fetched
again.

A further function of the tag RAM control 20 is to
administer a rolling invalidation process. This is a house-
keeping mechanism, administered by the rolling invalidation
control unit 30, which sweeps repeatedly from low to high
cache indices, searching for entries older than MAX_AGE
and invalidating those entries. The tag RAM control 20 is
provided with an index incrementer 31 which enables track
to be kept of the next entry to examine. The continuous loop
of cache indices swept by the rolling invalidation process is
graphically illustrated in FIG. 2 by the looping arrow shown
to the right of the tag storage unit 22. The rolling invalida-
tion process comprises two steps and one of two steps is
carried out each time a new entry is stored in the circular
buffer 12 (i.e. when a new 32-byte block of compressed data
is retrieved from memory). One of ordinary skill in this
technical field is very familiar with the mechanisms pro-
vided to enable such a newly retrieved block to be added to
the circular buffer 12 and the tag RAM 11 and further
detailed description is dispensed with here for brevity. This
functionality is merely summarised in FIG. 2 by the arrow
labelled “block of data from memory”.

At a first step of the rolling invalidation process a next
entry in the tag storage 22 is read. At the second step of the
rolling invalidation process that entry read at the first step is
examined, in particular by the age check unit 26, which
determines if the entry is older than MAX_AGE 27. If this
is true then the valid bit stored in association with this entry
is caused to be set to “invalid”’. Care is taken not to
invalidate an different brand new entry which is written
between the first step and the second steps and happened to
overwrite the same entry.

US 9,471,493 B2

11

Because only one of the two alternating steps of the
rolling invalidation process is carried out every time a new
block of data is added to the circular buffer 12, the house-
keeping loop takes twice the cache depth of circular buffer
to complete one sweep over the indices of the tag RAM
storage 22. Accordingly, the sequence numbering generated
by the sequence number generation unit 25 then have
progressed by twice the depth of the cache, meaning that the
minimum of 1+log 2 (cache depth) number of bits are
required to store the sequence numbers in the sequence
number field of the tag RAM storage 22. Nevertheless, the
rolling invalidation process following up behind the new
entries created in the tag RAM storage 22 and invalidating
those that have become too old means that the number of bits
allocated to storing the sequence number field in tag RAM
storage 22 can be significantly reduced from what might
otherwise be the case (in order to protect against the wrap
around issues mentioned above, when the sequence numbers
repeat) without the rolling invalidation process.

Now returning to a consideration of the tag RAM lookup
process, if the entry in the tag storage unit 22 indexed into
by the index generated by the hash generation unit 23 on the
basis of the received requests does contain a “valid” entry
which is not determined to be too old, then the correspond-
ing data item stored in the circular buffer can be used. The
storage location of the corresponding data item is deter-
mined by the circular buffer index calculation unit 28 in tag
RAM control 21, the corresponding block is retrieved and is
passed to the requester for processing (see arrow “block of
data for processing”). As an aside it should be noted that
although tag RAM control 20 and 21 are schematically
illustrated separately in FIG. 2 this is predominantly for
clarity of illustration and there is no reason why only a single
contiguous tag RAM control unit should not equally be
provided instead.

The circular buffer index calculation unit 28 determines
an index into the circular buffer 12 on the basis of the
sequence number retrieved from the matching entry, an
indication of the current value generated by the sequence
number generation unit 25 and a value generated by the
circular buffer position counter 29. The circular buffer
position counter 29 is in fact configured as a counter C
which increments through a predetermined sequence of
values, a new value in this sequence being generated when
a new entry is stored in the tag RAM. Like was shown in
FIG. 1, the “circular” nature of the circular buffer 12 is
graphically illustrated in FIG. 2 by the looping arrow shown
to its right.

The circular buffer position counter directly corresponds
to the circular buffer size and thus when a new entry is stored
in tag RAM, the value of the counter C corresponds directly
to the index of the storage location of the corresponding data
item in the circular buffer 12. However these values of C are
not stored in the tag RAM storage unit 22 (because it would
be prohibitively expensive in terms of storage space to do
s0). Instead the circular buffer index calculation unit 28 is
configured to determine the index of the storage location of
the data item corresponding to the match just found in the
tag RAM by effectively recalculating what that value C
would have been when that data item was originally stored
in the circular buffer. The value of the counter C at an earlier
time t0 can be determined at a later time t1 (when a lookup
is performed, found “hit” and thus corresponding position in
the circular buffer is sought) according to the following
formula:

C(10)=(C(t1)-age)mod BUFFSIZE,

25

30

35

40

45

55

65

12

where age represents the age of the matching entry in the
tag RAM (measured in terms of a difference of sequence
counter values) and BUFFSIZE represents the circular buf-
fer size.

This determination can be better understood from the
following explanation. Consider if the value of a theoretical
very large counter N (sufficient to count up though the full
range of operation of the data processing unit) were to be
known. The value of the (much smaller) counter S 25 can be
related to the theoretical big counter N as:

S(V)=N mod SRANGE

where the SRANGE is the range of the sequence numbers
(2 to the power of the number of bits used to store a sequence
number), whilst the value of the (also much smaller) counter
C is always equivalent to:

C(N)=N mod BUFFSIZE

At any time t0 for which a sequence number is set in the
tag RAM the value of S from that time is used, i.e.:

S(10)=10 mod SRANGE

At some later time t1 a lookup is performed, results in a
hit and the corresponding position in the circular buffer is
required to be found. Whilst it would have been convenient
if C(t0) had been stored in the tag RAM, it is not as
explained above for space reasons, and instead use can be
made of the equalities:

C(:0)=10 mod BUFFSIZE=(¢1-11+:0)mod BUFF-

SIZE~(r1-(r1-20))mod BUFFSIZE~(t1-age)
mod BUFFSIZE
Because of the rolling invalidation process, there’s a limit
on how old entries can be in the tag RAM

(age<MAX_AGE<SRANGE) and so

age=t1-10=t1-10 mod SRANGE=((¢1 mod
SRANGE)-(10 mod SRANGE))mod
SRANGE=5(11)-5(z0)mod SRANGE

and thus finally

C(t0)=(t1-age)mod BUFFSIZE=((z1 mod BUFF-
SIZE)-age)mod BUFFSIZE=(C(¢1)-age)mod
BUFFSIZE.

As aresult the values S(t1) and C(t1) of the counters S and
C can be used together with the tag entry sequence number
S(t0) to determine the circular buffer position.

Finally, the tag RAM control 20 also comprises a highest
accessed storage location counter D, which like counter C is
configured to count modulo BUFFSIZE, and tracks the
newest (highest) storage location that has been read by the
receiver of the data (AFBC decoder) by incrementing by one
whenever the storage location D+1 is read. As will be
described in more detail below, the value of this counter D
is used by the tag RAM control 20 delay commencing an
external memory access to fetch a new block if it is
determined that the storage location into which that new
block will be written (and in particular the content thereof)
is still in use.

FIG. 3 schematically illustrates a number of entries of
different types in the tag RAM in one embodiment. As
mentioned above with reference to FIG. 1 the tag RAM is in
fact configured to store separate body tag entries and header
tag entries, and in this illustrated embodiment the tag RAM
configured to store 256 header tags and 2048 body tags. Still
further, in this embodiment the tag RAM is configured to
store header position information and body position infor-
mation, a header position FIFO and a body position FIFO

US 9,471,493 B2

13

(conceptually similar to the header circular buffer and body
circular buffer) being provided for this purpose. These are
not explicitly illustrated, but form part of the tag RAM 11 in
a conceptually similar manner to the additional part 11A
shown in FIG. 1. These are used to keep track of indices into
the circular buffers into which entries which are already the
subject of a fetch, but have not yet arrived in the circular
buffers, will be stored. This allows for the fact that retrieval
of'an entry from memory may for example take between 100
and 1000 cycles to complete. A decode unit of the data
processing apparatus (not illustrated) make use of these
FIFO entries to track where requested entries will be found
once they have arrived. In the illustrated embodiment the tag
RAM is configured to store 64 words of header position
information and 256 words the body position information. It
is noted here as an aside that because position FIFOs are also
stored in the tag RAM there around 4 RAM accesses per
cache access plus about one for the rolling invalidation
process. The increase in RAM access count is lower than the
decrease in RAM width enabled by the rolling invalidation
process, and thus the power consumption aspect is kept
under control.

An example body tag entry is also shown in FIG. 3,
showing that one bit is used to store the valid it, 17 bits are
used for the tag field and 13 bits are used to store the
sequence number. Where in this example embodiment the
tag RAM is configured to store 2048 body tags, the 13 bits
used store the sequence number can be seen to correspond
to the above-mentioned minimum of 1+log 2 (2048) bits,
with an additional bit used as a safety margin against
particular corner case scenarios, giving 13 bits in total. It
should be noted that the implementation of the rolling
invalidation process in this embodiment has thus enabled a
reduction in the tag RAM width by about a third, from 46 to
31 bits. Also, in this embodiment can be seen that MAX_
AGE has been set to 2048-192=1856, where 192 entries
have thus been allocated for prefetch purposes.

FIG. 4 schematically illustrates a sequence of steps which
are carried out in one embodiment by the tag RAM control
20, and in particular by its rolling invalidation control unit
30, to implement the rolling invalidation process. The flow
can be considered to begin at step 40 where is determined if
a new entry is to be stored in the cache (i.e. a data item in
the circular buffer 12, and it corresponding tag information
in the tag RAM 11). Whilst this is not true the flow loops
back via step 41, waiting until this happens. Once this
condition is fulfilled at step 40 the flow proceeds to step 42
where it is determined whether step one or step two of the
rolling invalidation process should be carried out. When step
one of the rolling invalidation process should be carried out
the flow proceeds to step 43 where the next index indicated
by the index incrementer 31 indicates a tag entry to be read
from the tag RAM storage 22. This is done, with the content
of the tag entry being held in the tag RAM control 20 (by
storage provided therefor not explicitly shown) until step
two is carried out. At step 44 the rolling invalidation control
30 updates an internal flag (not explicitly shown) to indicate
that step two should be carried out next and the flow returns
to step 40. When another new entry is to be stored in the
cache then the flow again proceeds to step 42 but this time
from here the flow proceeds to step 44 in order for step two
of the rolling invalidation process to be carried out. At step
44 it is determined if the tag entry read at step was valid and
older than the predetermined age limit MAX_AGE. If this is
true then the flow proceeds to step 45, where it is checked
if the corresponding entry has already been overwritten by
the new entry being stored in the cache. If this is not the case

10

15

20

25

30

35

40

45

50

55

60

65

14

then the flow proceeds to step 46 where the tag RAM control
20 (in particular the age check unit 26) causes the valid bit
to be updated to invalidate this entry. Thereafter, or if the
answer at step 44 was no, or if the answer at step 45 was yes,
the flow proceeds to step 47 where the rolling invalidation
control 30 updates the internal flag now to indicate that step
one should be carried out next. The flow then returns to step
40, ready for step one to be carried out once the next entry
is to be stored in the cache.

FIG. 5 schematically illustrates a sequence of steps which
are taken by the data processing apparatus 10 of FIG. 1 in
one embodiment. The flow begins at step 50 when a new
reference frame area request is received. Then at step 51a tag
look up procedure is carried out on the content of the tag
RAM 11. If this misses, then the flow proceeds to step 52
where the tag memory is appropriately updated, if necessary.
Then at step 53 one of the two steps of the rolling invali-
dation process (as described above for example with refer-
ence to FIG. 4) is carried out. Thereafter at step 54 it is
determined if the circular buffer position to which a new
block must now be fetched is currently in use. The tag RAM
control 20 is configured to wait (step 55) before commenc-
ing the external memory access to fetch the required block
(at step 56), until a flow control condition is met. This flow
control condition is that the circular buffer position to which
the block will be fetched (C) must not be equal to:

(D-MAX_AGE)mod BUFFSIZE

where D is the newest (highest) storage location that has
been accessed by the receiver of the requested data.

Once the new block has been fetched at step 56, the data
can be used as required at step 57. Returning to step 51, if
the tag look up procedure carried out on content of the tag
RAM 11 hits (and here it should be understood that this only
means that the tag field information matched, in other words
is the “provisional hit” referred to above) then the flow
proceeds to step 58 where the tag RAM control 20 deter-
mines if the valid bit of this matching entry is set to indicate
“valid” and the age of the entry (as determined with refer-
ence to its stored sequence number) is less than or equal to
MAX_AGE. If either of these conditions are not true then
the flow proceeds to step 52 and the access is treated like a
cache miss. In this instance the update of the tag memory 52
can comprise setting the valid bit of this entry to now
indicate “invalid”. If however both of these conditions are
met at step 58 then the flow proceeds to step 59 where the
location of the data in the circular buffer is determined (as
described above by the action of the circular buffer index
calculation unit 28) and thereafter the flow proceeds to step
57 where the cached data is used as required.

In overall summary a data processing apparatus and
corresponding method of data processing are provided. The
data processing apparatus comprises a temporary data store
configured to store data items retrieved from a memory,
wherein the temporary data store selects one of its plural
data storage locations in which to store a newly retrieved
data item according to a predetermined circular sequence.
An index data store is configured to store index items
corresponding to the data items stored in the temporary data
store, wherein presence of a valid index item in the index
data store is indicative of a corresponding data item in the
temporary data store. Invalidation control circuitry performs
a rolling invalidation process with respect to the index items
stored in the index data store, comprising sequentially
processing the index items stored in the index data store and
selectively marking the index items as invalid according to
a predetermined criterion.

US 9,471,493 B2

15

Although a particular embodiment has been described
herein, it will be appreciated that the invention is not limited
thereto and that many modifications and additions thereto
may be made within the scope of the invention. For example,
various combinations of the features of the following depen-
dent claims could be made with the features of the indepen-
dent claims without departing from the scope of the present
invention.

The invention claimed is:

1. A data processing apparatus comprising:

a temporary data store configured to store data items
retrieved from a memory, wherein the temporary data
store has plural data storage locations configured to
store the data items and the temporary data store is
configured to select a storage location of the plural data
storage locations in which to store a newly retrieved
data item according to a predetermined circular
sequence of the plural data storage locations;

an index data store configured to store index items cor-
responding to the data items stored in the temporary
data store, wherein presence of a valid index item in the
index data store is indicative of a corresponding data
item in the temporary data store; and

invalidation control circuitry configured to perform a
rolling invalidation process with respect to the index
items stored in the index data store, wherein the rolling
invalidation process comprises sequentially processing
the index items stored in the index data store and
selectively marking the index items as invalid accord-
ing to a predetermined criterion,

wherein the invalidation control circuitry is configured,
when performing the rolling invalidation process, such
that the predetermined criterion is fulfilled if a duration
for which a selected index item has been stored in the
index data store exceeds a predetermined period, and

wherein the invalidation control circuitry is configured to
determine the duration for which the selected index
item has been stored in the index data store with
reference to a count of a number of index items which
have been stored in the index data store since the
selected index item was stored in the index data store.

2. The data processing apparatus as claimed in claim 1,
wherein the rolling invalidation process comprises two
steps, wherein at a first step of the two steps the selected
index item is read from the index data store and at a second
step of the two steps the selected index item is marked as
invalid if a duration for which the selected index item has
been stored in the index data store exceeds a predetermined
period.

3. The data processing apparatus as claimed in claim 2,
wherein a single step of the two steps is performed each time
a new index item is stored in the index data store.

4. The data processing apparatus as claimed in claim 1,
wherein the invalidation control circuitry is configured to
sequentially perform the rolling invalidation process with
respect to a further predetermined circular sequence of
storage locations of the index items stored in the index data
store.

5. The data processing apparatus as claimed in claim 1,
wherein the index data store is configured to store a
sequence number in association with each of the index
items, wherein the sequence number is incremented for each
new index item stored in the index data store.

6. The data processing apparatus as claimed in claim 5,
wherein the invalidation control circuitry is configured,
when performing the rolling invalidation process, such that
the predetermined criterion is fulfilled if a duration for

10

20

30

35

40

45

16

which a selected index item has been stored in the index data
store exceeds a predetermined period, and wherein the data
processing apparatus is configured to determine the duration
for which a selected index item has been stored in the index
data store with reference to the sequence number stored in
association with the selected data item.

7. The data processing apparatus as claimed in claim 5,
wherein the data processing apparatus is configured, when
access to a selected data item in the memory is required, to
determine with reference to the index items in the index data
store if the selected data item is stored in the temporary data
store, and, if it is determined that the selected data item is
stored in the temporary data store, to determine a storage
location of the selected data item in the temporary data store
with reference to the sequence number.

8. The data processing apparatus as claimed in claim 7,
wherein the data processing apparatus is configured to
determine the storage location of the selected data item in
the temporary data store using a calculation dependent on
the sequence number and a modulo of a number of the plural
data storage locations in the temporary data store.

9. The data processing apparatus as claimed in claim 8,
wherein the data processing apparatus further comprises a
counter configured to wrap around at the number of the
plural data storage locations in the temporary data store,
wherein the counter is incremented for each new index item
stored in the index data store, and wherein the storage
location of the selected data item in the temporary data store
is calculated as a current value of the counter minus a
duration for which the selected index item has been stored
in the index data store modulo the number of the plural data
storage locations in the temporary data store.

10. The data processing apparatus as claimed in claim 1,
wherein the data processing apparatus is configured, when
access to a selected data item in the memory is required, to
determine with reference to the index items in the index data
store if the selected data item is stored in the temporary data
store, and, if it is determined that the selected data item is
stored in the temporary data store, to determine if a duration
for which the selected index item has been stored in the
index data store exceeds a predetermined period, and, if the
duration for which the selected index item has been stored
in the index data store exceeds the predetermined period, to
cause the selected data item to be retrieved from the
memory.

11. The data processing apparatus as claimed in claim 1,
wherein the data processing apparatus is configured, when
access to a selected data item in the memory is required, to
determine with reference to the index items in the index data
store if the selected data item is stored in the temporary data
store, and if a selected index item corresponding to the
selected data item is marked as invalid, to cause the selected
data item to be retrieved from the memory.

12. The data processing apparatus as claimed in claim 1,
wherein a number of the plural data storage locations in the
temporary data store is greater than a number of index items
which are processed by the rolling invalidation process in
the predetermined period.

13. The data processing apparatus as claimed in claim 1,
wherein the data processing apparatus is configured, when it
is determined that the newly retrieved data item must be
retrieved from the memory to the temporary data store, to
delay the retrieval until a previous data item stored in the
storage location has been stored in the temporary data store
for longer than the predetermined period.

US 9,471,493 B2

17

14. The data processing apparatus as claimed in claim 1,

wherein the data items are portions of a reference frame of

video data.

15. The data processing apparatus as claimed in claim 14,
wherein each index item is stored in the index data store at
alocation given by a hash of at least one identifier associated
with the corresponding portion of the reference frame.

16. The data processing apparatus as claimed in claim 15,
wherein the at least one identifier comprises at least one of:
coordinate value information, a reference frame identifier,
and information regarding a storage location in the memory.

17. A data processing apparatus comprising:

means for storing data items retrieved from a memory,

wherein the means for storing data items has plural data
storage locations configured to store the data items;
means for selecting a storage location of the plural data
storage locations in which to store a newly retrieved
data item according to a predetermined circular
sequence of the plural data storage locations;
means for storing index items corresponding to the data
items stored in the means for storing data items,
wherein presence of a valid index item in the means for
storing index items is indicative of a corresponding
data item in the means for storing data items; and

means for performing a rolling invalidation process with
respect to the index items stored in the means for
storing index items, wherein the rolling invalidation
process comprises sequentially processing the index
items stored in the means for storing index items and
selectively marking the index items as invalid accord-
ing to a predetermined criterion,

wherein the means for performing a rolling invalidation

process is configured, when performing the rolling
invalidation process, such that the predetermined cri-
terion is fulfilled if a duration for which a selected

18

index item has been stored in the means for storing
index items exceeds a predetermined period, and

wherein the means for performing a rolling invalidation
process is configured to determine the duration for
which the selected index item has been stored in the
means for storing index items with reference to a count
of a number of index items which have been stored in
the means for storing index items since the selected
index item was stored in the means for storing index
items.

18. A method of data processing comprising:

storing data items retrieved from a memory in plural data
storage locations configured to store the data items;

selecting a storage location of the plural data storage
locations in which to store a newly retrieved data item
according to a predetermined circular sequence of the
plural data storage locations;

storing index items corresponding to the data items stored
in the plural data storage locations, wherein presence of
a valid stored index item is indicative of a correspond-
ing data item in the plural data storage locations; and

performing a rolling invalidation process with respect to
the stored index items, wherein the rolling invalidation
process comprises sequentially processing the stored
index items and selectively marking the index items as
invalid according to a predetermined criterion and the
predetermined criterion is fulfilled if a duration for
which a selected index item has been stored in the index
data store exceeds a predetermined period, and

determining the duration for which the selected index
item has been stored with reference to a count of a
number of index items which have been stored since
the selected index item was stored.

#* #* #* #* #*

